8 Компьютерно-интегрированная конструкторско-технологическая подготовка производства

8.1 Размерный анализ ТП и расчёт технологических размеров на базе программы построения и решения технологических размерных цепей

Исходные данные – чертеж детали показан на рисунке 8.1.

Рисунок 8.1 – Чертеж детали «Вал05.cdw»

Расчет производится при номощи программы KON7 [24].

Автоматизация расчета линейных технологических размерных цепей имеет своей целью ускорение расчетных работ по определению межпереходных размеров, припусков и допусков, которые определяются обычно расчетно-аналитическим методом.

Для расчёта межнереходных размеров и припусков в программе KON7 необходимо подготовить исходные данные.

1 Порядок подготовки исходных данных:

1.1. Сначала выполняется чертёж детали с указанием конструкторских размеров.

1.2. На чертёж наносятся снимаемые в процессе обработки припуски. На схеме припуски изображаются в сторону заготовки, начиная от припусков на чистовую обработку и заканчивая припусками на черновую обработку.

1.3. Промежуточные поверхности (включая поверхности заготовки), возникающие в процессе обработки, последовательно нумеруются слева направо.

1.4 Наносятся размеры заготовки.

1.5. Наносятся размеры механообработки. При этом базовая поверхность обозначается точкой, а обрабатываемая стрелкой (рисунок 8.2).

Рисунок 8.2 – Размерная схема «Размерная схема.frw» Граф размерных изменений изображен на рисунке 8.3.

Рисунок 8.3 – Граф размерных изменений «Граф.frw»

2. Заполняю вкладку «Общие данные», с указанием в полях диалогового окна материал заготовки, метод ее получения, класс точности, форму детали и наибольший габаритный размер заготовки. Заполненная вкладка показана на рисунке 8.4.

Исходные данные [C:\Documents and Settings\user\Рабочий стол\Стрижов\КОН 🔳 🗖 🔀							
Общие данные Конструкторские раз	меры Припуски Размеры заготовки Технологические размеры						
Текст пользователя	Стрижов						
Материал	Сталь						
Метод получения заготовки	Штамповка						
Класс точности или способ резки	Повышенный						
Форма детали	Цилиндрическая						
Наибольший габаритный размер, мм	573.000						
	KON						
	Расчёт Отмена						

Рисунок 8.4 – Общие данные

3. Во вкладке «Конструкторские размеры» ввожу их значения. Для ввода размера нажимаем правую кнопку мыши в поле вкладки и выбираем пункт «Добавить». Указываем левую и правую границы размера, минимальное и максимальное значение конструкторских размеров с размерной схемы. Результат показан на рисунке 8.5.

Рисунок 8.5 – Конструкторские размеры

Для корректировки введённых значений щёлкаем левой кнопкой на поле P1, а затем нажимаем правую кнопку мыши, и из контекстного меню выбираем пункт «Изменить». Открывается окно, показанное на рисунке 8.6.

Конструкторские	е размеры 🛛 🚺
N	P1
Границы	
Левая	2
Правая	18
Предельные знач	нения, мм
Max	573.000
Min	572.000
Принять	Отмена

Рисунок 8.6 – Ввод границ и предельных размеров

4. Во вкладке «Припуски» для ввода каждого припуска нажимаем правую кнопку мыши с указанием границ припусков с размерной схемы (рисунки 8.7).

4сход	ные данн	ые [С:\Do	cuments and S	ettings\ı	ıser\Pабочий с	тол\Стрижов\К	он 💶 🗖	>
Общи	ие данные	Конструктор	оские размеры	Трипуски	Размеры загото	вки Технологиче	еские размеры	
N	Новая	Старая	Минимальное					^
Z1 Z2 Z3	3	∠ 4 5						
Z4 Z5	6 7	7						
26 Z7 Z8	8 10 11	9 11 12						
Z9 Z10	12 14	13 15						
Z11 Z12 Z13	15 16 18	16 17 19						~
			Par	uër	Отмена			
				.101				

Рисунок 8.7 – Припуски

5. В закладке «Размеры заготовки» нажимаем правую кнопку мыши для ввода каждого размера. Границы задаём номерами крайних поверхностей заготовки в одном координатном направлении, в соответствии с размерной схеме. Допуск на размер А1 относительно номинала принимаем по системе вала.

Размеры заготовки, габариты заготовки, величина допуска и отклонения задаются в окне, показанном на рисунке 8.8.

1					\bigcirc	
	Исход	ные данн	ые [С:Юо	Размеры заготовки	、	грижов\КОН 🔳 🔲 🗙
	Общи	ие данные Н	Конструкто	N C	A5	ехнологические размеры
	N A1 A2	Левая 1 6 2	Правая 19 17	Границы Ловая Правая	13 17	ижнее Габариты 573.000 169.700 125.000
	A4 A5	17 13	19 77	Допуск По системе Вериниче	Вал 💌	250.000 47.500
				Верхнее отклонение, Нижнее отклонение,	0.000	
		- SK	\leq	Габариты поверхности,	47.500	
			>	Принять	Отмена	

Рисунок 8.8 – Ввод размеров заготовки

6. В закладке «Технологические размеры» вводим их в последовательности обработки заготовки. Для ввода каждого размера нажимаем правую кнопку мыши. Расположение допуска относительно подлежащего расчету номинала размера указываем по системе вала (рисунок 8.9).

V	Ісход	ные да	нные [С:\	Documents and Se	ettings\	user\Pa6	іочий стол	\Стрижов	кон 🔳	
	Общи	е данные	Конструк	торские размеры Г	Ірипуски	Размер	ы заготовки	Технологи	ческие размер	ы
	N	Баз	Обработ	Метод обработки	Сист	Допуск	Верхнее	Нижнее	Габариты	^
	A6 47	1 18	18 2	Фрезерование о Фрезерование о	Вал Вал	Стан Поль	0 100	0.050	573.000 573.000	
	A8	18	16	Точение черновое	Вал	Стан	0.100	0.000	250.000	
	A9 A10	18	12	гочение черновое Точение чистовое	Вал Вал	стан Стан			47.500 250.000	
	A11 A12	15 2	11 4	Точение чистовое Точение черновое	Вал Вал	Стан Стан			47.500 28.000	
	A13 A14	4	7	Точение черновое Точение чистовое	Вал Вал	Стан Поль	0 170	0.050	125.000 28.000	
	A15	5	8	Точение чистовое	Вал	Стан	0.170	0.050	125.000	
	A10 A17	14	10	Шлифование одн Шлифование одн	Вал	Стан	0.170	0.050	47.500	
	I A18	5	9	Шлифование одн	Вал	Стан			125.000	
				Pac	чёт	Отме	на			

Рисунок 8.9 – Технологические размеры

7. После ввода в программу КОN7 по размерной схеме всех исходных данных нажимаем кнопку «Расчет» для вывода результатов (таблица 8.1).

Таблица 8.1 – Результаты расчета технологических размерных цепей

Pa	спеч Све Мат Спо Кла Габ	Ре Ка З атка дени ериа соб .cc (арит	зультаты федра ТМС а к а з ч введенны и о загот л получения степень) гный разме	расчета (2 ЯГТУ, () и и к их исходни совке: и точности сор	техној С) Кај Стр ых дан С Ц	югич іачев оижов іных сталь Ітамп 573.0	ескі 0.1 (про овка	их размерных целей H., 2000 **** KON7 **** оверьте правильность ввода а повыш.точности	!)	Табл	ища 1	
P-	З черт	амык .раз	ающие зве вмер. Z-пр	енья рипуск		X	5	Составляющие звенья		Габа риты	Отклої допусі	нения ка
зве- но	Гра ниц	 ,ы	Предел.з 	значения min	Зве- Но	Гра ниц 0	- ы >	Метод обработки	Сист допу ска	обра бот. пове рхн.	пользо 	ователя Нижнее
P1 P1 P2 P2 P3 P4 P5 Z1 Z2 Z2 Z3 Z2 Z4 Z5 Z6 Z7 Z7 Z8 Z9 Z10 Z11 Z12 Z13 -	2 9 5 14 10 1 3 4 6 7 8 10 11 12 14 15 16 18 	18 14 9 18 14 2 4 5 7 8 9 11 12 13 15 16 17 19	573.000 169.700 125.500 250.000 47.595 0.000 0	572.000 159.400 124.500 249.400 47.425 0.000 0	A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18	1 6 3 17 13 1 8 18 18 16 18 15 2 4 2 5 18 14 5	19 17 6 19 17 18 2 16 12 15 11 4 7 5 8 14 10 9	Штамповка повыш. точности Штамповка повыш. точности Штамповка повыш. точности Штамповка повыш. точности Штамповка повыш. точности Штамповка повыш. точности Фрез-ние однократное Фрез-ние однократное Точение черновое Точение черновое Точение чистовое Точение чистовое Точение черновое Точение черновое Точение чистовое Точение чистовое Точение чистовое Шлифование однократное Шлифование однократное	Baл Baл	573 170 125 250 48 573 573 250 48 250 48 28 28 125 28 125 250 48 125	0.000 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.170 0.000 0.170 0.000 0.170 0.000 0.170 0.000 0.170 0.000 0.170 0.000 0.170 0.000 0.170 0.000 0.170 0.000 0.170 0.000	0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.050 0.050 0.000 0.050 0.000
Блон Резул	: 3 њтат	ы ра	ісчета - у	иравнения	разме	ерных	цеі	лей		Табл	тица 2	

Номер решения	Неизв. звено	Уравнения в символьной форме
1		D1-+27

1 | A7 | P1=+A7

2	A18	P3=+A18			
3	A16	P4=+A16			
4	A17	P5=+A17			
5	A14	P2=-A14-A16-A18+A7			
6	A6	Z1=-A7+A6			
7	A15	Z6=-A15+A18			
8	ALO	210 = -A10 + A16			
10	AL2	23 = -A12 + A14			
10		Z = AIU - AII + AI0 + AI /			
12		211 = -A6 + A10 713 = -A6 + A1			
13	A13	75 = -A12 - A13 + A14 + A15			
14	A9	Z8=-A8-A9+A10+A11			
15	A4	Z12=-A4-A6+A1+A8			
16	A2	Z4=-A1-A7+A2+A4+A6+A12+A13			
17	A5	Z9=-A4-A5-A6+A1+A8+A9			
18	A3	Z2=-A1-A7+A2+A3+A4+A6+A12			
БЛОК 4 ** Инфол	Manne		A THE BOARD PARTY		
Program	KON7 O	н Капачев-2000	размеров при рег	пении разм. ценеи	
Решается	а разм. ц	епь 1 типа "Р" с неизв. звен	ном А7, код ме	етода получения= 83	
	сост	ав цепи:			
	увелич.	звено А7 :	max= 0.000	min= 0.000	
	замык. з	вено - констр. размер Pl :	max= 573.000	min= 572.000	
	результа	ты расчёта звена А7 :	max= 573.000	min= 572.000	
	следоват	ельно, расч. допуск= 1.000	о С	\bigcirc	
	технолог	. допуск заданного метода полу	учения звена, пр	редлагаемый	
	системои	= 0.900 : верхн. откл.= 0.900	нижн. откл.= (1.000	
	Texholiol	ич. допуск, заданный пользова:	0 050		
	принимае	м расчётный размер звена А7	C VYPTOM TRXHOI	юг. допуска:	
	номинал=	573.000	max= 573.000	min= 572.950	
Решается	а разм. ц	епь 2 типа "Р" с неизв. звен	ном А18, код ме	етода получения=113	
	сост	ав цепи:	()		
	увелич.	звено А18 :	max= 0.000	min= 0.000	
	замык. з	вено - констр. размер РЗ : 4	max= 125.500	min= 124.500	
	результа	ты расчета звена А18 :	max= 125.500	min= 124.500	
	технолог	попуск заланного метода долу	Ления звена п	реппараемый	
	системой	= 0.040 : верхн. откл.= 0.040	нижн. откл.= (0.000	
	принимае	м расчётный размер звена А18	с учётом техној	юг. допуска:	
	номинал=	125.500	max= 125.500	min= 125.460	
Решается	н разм. ц	епь 3 типа "Р" с неизв. звен	ном А16 , код ме	етода получения=113	
	сост	ав цепи:			
	увелич.	звено А16 :	max= 0.000	min= 0.000	
	замык. з	вено – констр. размер Р4 :	max = 250.000	min= 249.400	
	спеловал	entro pacy nonvers 0 600	1 III.a.x = 250.000	1111-249.400	
	технолог	. лопуск заланного метола полу	, ичения звена, по	еллагаемый	
	системой	= 0.047 : верхн. откл.= 0.047	нижн. откл.= (0.000	
	технолог	ич. допуск, заданный пользова:	гелем= 0.120		
	верх. от	кл.= 0.170 нижн. откл.=	0.050		
	принимае	м расчётный размер звена A16	с учётом техној	юг. допуска:	
-	номинал=	250.000	max= 250.000	min= 249.880	
Решается	тразм. ц	епь 4 типа "Р" с неизв. звен	ном А1/, код ме	етода получения=113	
	VВелич.	звено А17 :	max= 0.000	min= 0.000	
	замык. з	вено - констр. размер Р5 :	max= 47.595	min= 47.425	
	результа	ты расчёта звена А17 :	max= 47.595	min= 47.425	
	следоват	ельно, расч. допуск= 0.170	D		
	технолог	. допуск заданного метода полу	учения звена, пр	редлагаемый	
	системой	= 0.025 : верхн. откл.= 0.025	нижн. откл.= (0.000	
	принимае	м расчётный размер звена A17	с учётом техној	юг. допуска:	
Peillaemo	HOMMHAJI-	ATL 5 THE "D" C HENSE SEE	10M Δ14 ΚΟΠ MG	1111 - 47.570	
I CHILLEIC,	гразм. ц сост	ав цепи:	том ны , код ме	, ioga nosiy tenna / i	
	уменьш.	звено А14 :	max= 0.000	min= 0.000	
	уменьш.	звено А16 :	max= 250.000	min= 249.880	
	уменьш.	звено А18 :	max= 125.500	min= 125.460	
	увелич.	звено А7 :	max= 573.000	min= 572.950	
	замык. з	вено – констр. размер Р2 :	max= 169.700	min= 169.400	
	результа	ты расчета звена А14 :	max= 28.050	min= 27.960	
	технолог	попуск заланново мелона пол	, Anonna spors	оеппатаемый	
	системой	= 0.084 : верхн. откл. = 0.084	нижн. откп = (0.000	
	технолог	ич. допуск, заданный пользова	гелем= 0.120		
	верх. от	кл.= 0.170 нижн. откл.=	0.050		
Расчётный	допуск з	вена A14 отрицательный или ми	ного меньше техн	юлогического.	
Необходима	ая точнос	ть замыкающего звена не обеси	печивается		

Расчёт прерывается Номер решения последней цепи= 5. Справка: DT= 0.120, DR= 0.090 Внимание!!! С целью анализа возникшей ситуации расчёт повторяется заново, при этом снимается ограничение по допуску: на искомое звено A14 назначается жесткий расчётный допуск, значительно меньший, чем технологический _____ _____ Блок 4 ** Информация о ходе расчёта технологических размеров при решении разм. цепей ** Program KON7 О.Н.Калачев-2000 Решается разм. цепь 1 типа "Р" с неизв. звеном А7 , код метода получения= 83 состав цепи: увелич. звено А7 : max= 0.000 min= 0.000 замык. звено - констр. размер P1 : max= 573.000 min= 572.000 результаты расчёта звена A7 : max= 573.000 min= 572.000 результаты расчёта звена А7 : следовательно, расч. допуск= 1.000 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.900 : верхн. откл.= 0.900 нижн. откл.= 0.000 технологич. допуск, заданный пользователем= 0.050 верх. откл.= 0.100 нижн. откл.= 0.050 принимаем расчётный размер звена А7 с учётом технолог. допуска: номинал= 573.000 max= 573.000 min= 572.950 Решается разм. цепь 2 типа "Р" с неизв. звеном A18 , код метода получения=113 состав цепи: max= 0.000 увелич. звено А18 : min= 0.000 замык. звено - констр. размер РЗ : max= 125.500 min= 124.500 результаты расчёта звена A18 : max= 125.500 min= 124.500 следовательно, расч. допуск= 1.000 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.040 : верхн. откл.= 0.040 нижн. откл.= 0.000 принимаем расчётный размер звена А18 с учётом технолог. допуска: max= 125.500 min= 125.460 номинал= 125.500 Решается разм. цепь 3 типа "Р" с неизв. звеном A16, код метода получения=113 состав цепи: 0.000 увелич. звено А16 : max= min= 0.000 замык. звено – констр. размер Р4 : max= 250.000 min= 249.400 результаты расчёта звена А16 : max= 250.000 min= 249.400 результаты расчёта звена A16 : следовательно, расч. допуск= 0.600 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.047 : верхн. откл.= 0.047 нижн. откл.= 0.000 технологич. допуск, заданный пользователем= 0.120 верх. откл.= 0.170 нижн. откл.= 0.050 принимаем расчётный размер звена A16 с учётом технолог. допуска: номинал= 250.000 max= 250.000 min= 249.880 Решается разм. цепь 4 типа "Р" с неизв. звеном А17, код метода получения=113 состав цепи: увелич. звено А17: увелич. звено А17 : замык. звено - констр. размер Р5 : результаты расчёта звена А17 : следовательно, расч. допустя 0.170 max= 0.000 min= 0.000 max= 47.595 min= 47.425 max= 47.595 min= 47.425 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.025 : верхн) откл.= 0.025 нижн. откл.= 0.000 принимаем расчётный размер звена A17 с учётом технолог. допуска: max= 47.595 min= 47.570 номинал= 47.595 Решается разм. цепь 5 типа "Р" с неизв. звеном А14 , код метода получения= 74 состав цепи: уменьш. звено А14 : 0.000 min= 0.000 max= max= 250.000 max= 125.500 min= 249.880 уменьш. звено А16 : уменьш. звено А18 : min= 125,460 min= 572.950 увелич. звено А7 : max= 573.000 замык. звено - констр. размер Р2 : max= 169.700 min= 169.400 результаты расчёта звена A14 : следовательно, расч. допуск= 0.090 max= 28.050 min= 27.960 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.084 : верхн. откл.= 0.084 нижн. откл.= 0.000 технологич. допуск, заданный пользователем= 0.120 верх. откл.= 0.170 нижн. откл.= 0.050 Внимание! Система назначает на звено A14 жесткий допуск, равный расчётному. Практически это означает, что при получении звена следует выдерживать техн. допуск на 1 квалитет жестче заданного. Справка: DT= 0.120, DR= 0.090 принимаем расчётный размер звена A14 с учётом технолог. допуска: max= 28.050 min= 27.960 номинал= 28.050 Решается разм. цепь 6 типа "Z" с неизв. звеном A6 , код метода получения= 83 припуск ZMIN, рассчитанный системой= 0.420 состав цепи: уменьш. звено А7 : увелич. звено А6 : max= 573.000 min= 572.950 max= 0.000 min= 0.000 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.900 : верхн. откл.= 0.900 нижн. откл.= 0.000 расчётный размер звена Аб : номинал= 574.320 max= 574.320 min= 573.420

Решается разм. цепь 7 типа "Z" с неизв. звеном A15 , код метода получения= 74 припуск ZMIN, рассчитанный системой= 0.180 состав цепи: max= 0.000 min= 0.000 уменьш. звено А15 : max= 125.500 min= 125.460 увелич. звено А18 : технолог. допуск заданного метода получения звена, предлагаемый системой= 0.160 : верхн. откл.= 0.160 нижн. откл.= 0.000 расчётный размер звена А15 : номинал= 125.280 max= 125,280 min= 125,120 Решается разм. цепь 8 типа "Z" с неизв. звеном A10 , код метода получения= 74 припуск ZMIN, рассчитанный системой= 0.180 состав цепи: max= 0.000 min= 0.000 max= 250.000 min= 249.880 уменьш. звено А10 : увелич. звено А16 : технолог. допуск заданного метода получения звена, предлагаемый системой= 0.185 : верхн. откл.= 0.185 нижн. откл.= 0.000 расчётный размер звена А10 : номинал= 249.700 max= 249.700 min= 249.515 Решается разм. цепь 9 типа "Z" с неизв. звеном A12 , код метода получения= 72 припуск ZMIN, рассчитанный системой= 0.170 состав цепи: max= 0.000 min= 0.000 max= 28.050 min= 27.960 уменьш. звено А12 : увелич. звено А14 : технолог. допуск заданного метода получения звена, предлагаемый системой= 0.280 : верхн. откл.= 0.280 нижн. откл.= 0.000 расчётный размер звена A12 : max= 27.790 min= 27.510 номинал= 27.790 Решается разм. цепь 10 типа "Z" с неизв. звеном All , код метода получения= 74 припуск ZMIN, рассчитанный системой= 0.140 состав цепи: max=249.700min=249.515max=0.000min=0.000max=250.000min=249.880 уменьш. звено А10 : уменьш. звено А11 : увелич. звено А16 : увелич. звено А17 : max= 47.595 min= 47.570 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.100 : верхн. откл.= 0.100 нижн. откл.= 0.000 поминал= 47.610 max= 47.610 min= 47.510 Решается разм. цепь 11 типа "Z" с неизв. звеном A8 , код метода получения= 72 припуск ZMIN, рассчитанный системой= 0.270 с о с т а в цепи: расчётный размер звена All : max= 0.000 min= ... max= 249.700 min= 249.515 уменьш. звено А8 : увелич. звено А10 : технолог. допуск заданного метода получения звена, предлагаемый системой= 0.600 : верхн. откл. = 0.600 нижн. откл. = 0.000 расчётный размер звена А8 номинал= 249.245 max= 249.245 min= 248.645 Решается разм. цепь 12 типа "Z" с неизв. звеном А1 , код метода получения= 22 припуск ZMIN, рассчитанный системой= 1.170 состав цепи 🗸 🛇 уменьш. звено Аб увелич. звено А1 max= 574.320 min= 573.420 max= 0.000 min= 0.000 технолог. допуск заданного метода получения звена, предлагаемый системой= 6.000 : верхн. откл.= 3.500 нижн. откл.=-2.500 расчётный размер звена A1 : номинал= 577.990 max= 581.490 min= 575.490 Решается разм. цепь 13 типа "Z" с неизв. звеном A13 , код метода получения= 72 припуск ZMIN, рассчитанный системой= 0.270 состав цепи: max= 27.790 уменьш. звено А12 : min= 27.510 уменьш. звено А13 : max= 0.000 min= 0.000 max= 28.050 увелич. звено А14 : min= 27.960 увелич. звено А15 : max= 125.280 min= 125.120 технолог. допуск заданного метода получения звена, предлагаемый системой= 0.530 : верхн. откл.= 0.530 нижн. откл.= 0.000 расчётный размер звена А13 : номинал= 125.020 max= 125.020 min= 124.490 Решается разм. цепь 14 типа "Z" с неизв. звеном А9 , код метода получения= 72 припуск ZMIN, рассчитанный системой= 0.230 состав цепи: max= 249.245 min= 248.645 уменьш. звено А8 : уменьш. звено А9 : max= 0.000 min= 0.000 max= 249.700 увелич. звено A10 : min= 249.515 max= 47.610 min= 47.510 увелич. звено А11 : технолог. допуск заданного метода получения звена, предлагаемый системой= 0.340 : верхн. откл.= 0.340 нижн. откл.= 0.000 расчётный размер звена А9 : max= 47.550 min= 47.210 номинал= 47.550 Решается разм. цепь 15 типа "Z" с неизв. звеном A4 , код метода получения= 22 припуск ZMIN, рассчитанный системой= 0.730

состав цепи: max= 0.000 min= 0.000
max= 574.320 min= 573.420 уменьш. звено А4 : уменьш. звено Аб max= 581.490 min= 575.490 увелич. звено А1 : max= 249.245 min= 248.645 увелич. звено A8 : технолог. допуск заданного метода получения звена, предлагаемый системой= 3.600 : верхн. откл.= 2.100 нижн. откл.=-1.500 расчётный размер звена А4 : номинал= 246.985 max= 249.085 min= 245.485 Решается разм. цепь 16 типа "Z" с неизв. звеном A2 , код метода получения= 22 припуск ZMIN, рассчитанный системой= 1.230 состав цепи: max= 581.490 min= 575.490 max= 573.000 min= 572 950 уменьш. звено А1 : уменьш. звено А7 : увелич. звено А2 : min= 0.000 max= 0.000 max= 249.085 min= 245.485 увелич. звено А4 : max= 574.320 min= 573.420 увелич. звено Аб : увелич. звено А12 : max= 27.790 min= 27.510 увелич. звено А13 : max= 125.020 min= 124.490 технолог. допуск заданного метода получения звена, предлагаемый системой= 3.600 : верхн. откл.= 2.100 нижн. откл.=-1.500 расчётный размер звена А2 : номинал= 186.315 max= 188.415 min= 184.815 Решается разм. цепь 17 типа "Z" с неизв. звеном A5 , код метода получения= 22 припуск ZMIN, рассчитанный системой= 1.530 состав цепи: max= 249.085 min= 245.485 vменьш. звено A4 : max= 0.000 min= 0.000
max= 574.320 min= 573.420 уменьш. звено А5 : уменьш. звено Аб увелич. звено А1 : max= 581.490 min= 575.490 max= 249.245 min= 248.645 max= 47.550 min= 47.210 увелич. звено А8 : увелич. звено А9 : технолог. допуск заданного метода получения звена, предлагаемый системой= 2.000 : верхн. откл.= 1.200 нижн. откл.=-0.800 расчётный размер звена А5 : max= 46.410 min= 44.410 номинал= 45.210 Решается разм. цепь 18 типа "Z" с неизв. зветом A3 , код метода получения= 22 припуск ZMIN, рассчитанный системой= 2.030 состав цепи: уменьш. звено А1 : уменьш. звено А7 : max= 581.490 min= 575.490 max= 573.000 min= 572.950 max= 188.415 min= 184.815 увелич. звено А2 : max= 0.000 min= 0.000 увелич. звено АЗ : max= 249.085 увелич. звено А4 : увелич. звено А6 : min= 245,485 min= 573.420 max= 574.320 увелич. звено А12 : max= 27.790 min= 27.510 технолог. допуск заданного метода получения звена, предлагаемый системой= 3.000 : верхн. откл.= 1.800 нижн. откл.=-1.200 расчётный размер звена АЗ 6 номинал= 126.490 max= 128.290 min= 125.290 Таблица 3 Результаты расчета технологических РЦ ЯГТУ, С Калачев О.Н., 2000 ** KON7 ** _____

Замыкающие звенья Составляющие звенья Р-черт.размер, Z-припуск | ----kon7-----_____ Ин- | Гра- | Предел.значения | Ин- | Гра- | лекс | ницы |------декс | ницы | лекс | Метод обработки звена | sвена | max | min |звена | звена | _____ _____ 2 18 573.000 572.000 А1 19 1 Штамповка повыш.точности 577.990 3.500 -2.500 P1

 9
 14
 169.400
 A2
 17
 6
 Штамповка повыш.точности
 186.315
 2.100
 -1.500

 5
 9
 125.500
 124.500
 A3
 6
 3
 Штамповка повыш.точности
 186.315
 2.100
 -1.200

 14
 18
 250.000
 249.400
 A4
 17
 19
 Штамповка повыш.точности
 126.490
 1.800
 -1.200

 14
 18
 250.000
 249.400
 A4
 17
 19
 Штамповка повыш.точности
 246.985
 2.100
 -1.500

 10
 14
 47.595
 47.425
 A5
 13
 17
 Штамповка повыш.точности
 45.210
 1.200
 -0.800

 1
 2
 --- 0.420
 A6
 1
 18
 Фрез-ние однократное
 574.320
 0.000
 -0.900

 2
 4
 --- 0.420
 A6
 1
 18
 Фрез-ние однократное
 574.320
 0.000
 -0.900

 P2 P3 Р4
 17
 19
 штамповка повыш.точности
 210.200
 2.11

 13
 17
 Штамповка повыш.точности
 45.210
 1.200
 -0.800

 1
 18
 Фрез-ние однократное
 574.320
 0.000
 -0.900

 2
 18
 Фрез-ние однократное
 573.000
 0.000
 -0.050

 18
 16
 Точение черновое
 249.245
 0.000
 -0.600

 16
 12
 Точение черновое
 47.550
 0.000
 -0.340
 Р5 $\mathbf{Z1}$ 3 4| 5| 2.030| A7 0.170| A8 Z2 ____ Z3 4 ____ 7 ---- | 1.230 A9 7.4 47.550 249.700 6 0.270 A10 | 0.180 A11 | 18 15 Точение чистовое 15 11 Точение чистовое z5 7 8 İ 0.000 -0.185 ____ , 8 9 47.610 0.000 -0.100 ____ 7.6 27.790 125.020 28.050 125.280 0.140 A12 | 0.230 A13 | 1.530 A14 | 0.000 -0.280 0.000 -0.530 Z7 | 10 11| ____ 2 4 Точение черновое 27.790 11 12 12 13
 --- 0.230
 А13
 4
 7
 Точение черновое
 125.020
 0.000
 -0.530

 --- 1.530
 А14
 5
 2
 Точение чистовое
 28.050
 0.000
 -0.090

 --- 0.180
 А15
 5
 8
 Точение чистовое
 125.280
 0.000
 -0.160

 --- 0.270
 А16
 18
 14
 Шлифование однократное
 250.000
 0.000
 -0.120

 --- 0.730
 А17
 14
 10
 Шлифование однократное
 47.595
 0.000
 -0.025

 --- 1.170
 А18
 9
 5
 Шлифование однократное
 125.500
 0.000
 -0.040
 7 Точение черновое Z8 ----4 79 710 14 15 Z11 15 16 Z12 16 17 Z13 | 18 19| _ _ _ _ _____ _____ _____ ____ _____ _____ Конец заказа Стрижов *** KON7 *** 2000

Конец задания.....КОМ7 2000

В результате расчета получаем межоперационные размеры на несколько поверхностей. В дальнейшем эти значения используем на рисунке 8.45 в операционной карте.

8.2 Расчет режимов резание с применением средств автоматизации

Расчеты проводятся в программе KONCUT [25].

Программа KONCUT предназначена для интерактивной подготовки исходной информации и расчета оптимальных по частоте вращения шпинделя режимов резания при точении, сверлении и фрезеровании. Выбор оптимальной частоты вращения выполняется на основе анализа целевых функций производительности, себестоимости обработки и стоимости инструмента.

После выбора метода обработки «КОN2 Точение», заполняем вкладку «Заказчик» и указываем свою фамилию и группу (рисунок 8.10).

Рисунок 8.11 – Материал заготовки

3.3 Во вкладке «Станок» указываем основные характеристики станка: обрабатывающего центра MacTurn -250W (рисунок 8.12).

КОN1 Точение								
Заказчик Материал заготовки Станок Режущий ин	струмент Технико-эк							
Название станка MacTum250-W								
Минимальная частота вращения шпинделя (Nmin), об/ Максимальная частота вращения шпинделя (Nmax), о	ин 200.000 6/мин 5000.000							
Минимальная величина подачи (Smin), мм/об	0.001							
Максимальная величина подачи (Smax), мм/об	30							
число ступеней ряда частоты вращения (кл) Число ступеней геометрического ряда подач (Ks)	30							
Мощность электродвигателя станка (N), кВт	20.0							
Козффициент полезного действия (КПД) 0.85								
Расчёт Отмена								

Рисунок 8.12 – Станок

3.4 Во вкладке «Режущий инструмент» указываем характеристики режущего инструмента (рисунок 8.13).

Заказчик Материал заготовки	и] Станок	Режущий инструмент	Технико-эк	Þ			
Тип резца	Проходно	й, подрезной, расточной	•				
Материал инструмента	Твёрдый	сплав Т15К6	-				
Профиль фасокного резца	Простой		-				
Подача инструмента в пределах ряда подач станка (S), мм/об 0.500							
Угол в плане (Fi), град			90				
Главный передний угол (Gamr	na), град		30				
Радчус при вершине (r), мм			0.400				

Рисунок 8.13 – Режущий инструмент

3.5 Во вкладке «Технико-экономические параметры» указываем время на отдых и время на обслуживание и вспомогательное время (рисунок 8.14).

² исунок 8.14 – 1ехнико-экономические параме

3.6 Заполняю вкладку «Содержание операции» с указанием необходимых параметров (рисунок 8.15).

KON1 Точение								
Технико-экономические пара	метры	Содержание операции	4 >					
Вид обработки	Нару	жное продольнос точение	•					
Характер обработки	Черн	овая	•					
Состояние поверхности	Горяч	ний прокат	•					
Глубина резания (t), мм			1.500					
Длина (ширина) резания (L	рез, 8),	MM	45.000					
Длина рабочего хода (Lpx),	мы		47.000					
Диаметр обработки (D), мм	1		70.000					
🗹 Наличие СОЖ								
P	асчёт	Отмена						

Рисунок 8.15 – Содержание операции

3.7 Проверив правильность введенных параметров во всех вкладках, нажимаем кнопку «Расчёт». При некорректном заполнении какого-либо поля программа выводит сообщение об ошибке и показывает, какой параметр введён неверно.

3.8 Результат расчета выполненный с помощью программы KONCUT, представлены ниже. По результатам расчета оформляется график целевых функций (рисунок 8.16).

8.doc Раздел из ДП Стрижева Н.П. 3ТМ-62 2009 <u>http://tms.ystu.ru</u> Каф. «Технология машиностроения» ЯГТУ Доц. Калачев О.Н. 13

Название станка Минимальная частота вращения шпинделя (Nmin), об/мин Максимальная частота вращения шпинделя (Nmax), об/мин Минимальная величина подачи (Smin), мм/об Максимальная величина подачи (Smax), мм/об Максимальная величина подачи (Smax), мм/об Число ступеней ряда частоты вращения (Kn) Число ступеней геометрического ряда подач (Ks) Мощность электродвигателя станка (N), кВт Коэффициент полезного действия (КПД)	MacTurn250-W 200.000 5000.000 0.001 1.000 30 20.0 0.85
Тип резца Материал инструмента Профиль фасонного резца Подача инструмента (S), мм/об Длина рабочего хода (Lpx), мм Угол в плане (Fi), град Угол в плане (Fi), град Главный передний угол (Gamma), град Радиус при вершине (r), мм Время на отдых + Время на обслуживание (Аотд+Аобс), % Вспомогательное время (Твс), мин	Проходной, подрезной, расточной Твёрдый сплав T15K6 Простой 0.500 130.000 130 30 0.400 6.00 0.2
Вид обработки Характер обработки Состояние обрабатываемой поверхности Глубина резания (t), мм Длина (ширина) резания (Lpes, B), мм Диаметр обработки (D), мм Наличие COЖ	Наружное продольное точение Черновая Горячий прокат 2.700 126.000 70.000 Да

Результаты расчёта по программе КОМСИТ (С) Калачёв О.Н., 2000

Номер Ва- рианта 	Частота вращения шпинделя, об/мин	Производи- тельность станка, дет/час	Себестоимость обработки детали, коп	Стоимость расходов на инструмент, коп	Машинное время, мин
<pre> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 </pre>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 36.85\\ 40.51\\ 44.46\\ 48.69\\ 53.20\\ 57.99\\ 63.03\\ 68.27\\ 73.64\\ 79.04\\ 84.25\\ 88.92\\ 92.31\\ 92.70\\ 84.09\\ 57.47\\ 59.05\\ 60.54\\ 61.94\\ 63.25\\ 64.47\\ 65.60\\ 66.64\\ 67.60\\ 68.49\\ 69.30\\ 70.04\\ 70.72\\ 71.34\\ \end{array}$	$\begin{array}{c} 2 \ 49 \\ 2.28 \\ 2.08 \\ 1.92 \\ 1.77 \\ 1.64 \\ 1.53 \\ 1.44 \\ 1.36 \\ 1.31 \\ 1.29 \\ 1.30 \\ 1.37 \\ 1.59 \\ 2.29 \\ 4.96 \\ 4.92 \\ 4.88 \\ 4.85 \\ 4.82 \\ 4.79 \\ 4.77 \\ 4.75 \\ 4.73 \\ 4.71 \\ 4.69 \\ 4.66 \\ 4.67 \\ 4.66 \\ 4.67 \\ 4.66 \\ 1.66 \\ $	0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.14 0.17 0.22 0.29 0.40 0.62 1.22 3.39 3.40	$\begin{array}{c} 1.33\\ 1.19\\ 1.06\\ 0.95\\ 0.85\\ 0.76\\ 0.68\\ 0.61\\ 0.55\\ 0.49\\ 0.44\\ 0.39\\ 0.35\\ 0.31\\ 0.28\\ 0.25\\ 0.22\\ 0.20\\ 0.18\\ 0.25\\ 0.22\\ 0.20\\ 0.18\\ 0.16\\ 0.14\\ 0.13\\ 0.12\\ 0.10\\ 0.09\\ 0.08\\ 0.07\\ 0.06\end{array}$
30 # + Номер Ва- рианта	5000.000 + Штучное время, мин	71.90 + Стойкость инстру- мента,	4.65 Стойкость инстру- мента,	3.40 Скорость резания, м/мин	0.05 Мощность резания, кВт
 + 1 2 3 4 5 6 7 8	 1.63 1.48 1.35 1.23 1.13 1.03 0.95 0.88	дет 242.22 220.51 199.19 178.37 158.16 138.67 119.99 102.22	мин 311.819 254.040 205.371 164.587 130.609 102.480 79.358 60.505	59.66 66.66 74.49 83.23 93.00 103.92 116.12 129.75	1.42 1.56 1.71 1.88 2.07 2.27 2.50 2.74

8.doc Раздел из ДП Стрижева Н.П. 3ТМ-62 2009 <u>http://tms.vstu.ru</u> Каф. «Технология машиностроения» ЯГТУ Доц. Калачев О.Н. 14

9	0.81	85.46	45.272	144.98	3.02
10	0.76	69.80	33.092	162.00	3.31
11	0.71	55.32	23.472	181.02	3.64
12	0.67	42.09	15.982	202.27	4.00
13	0.65	30.15	10.245	226.02	4.40
14	0.65	19.49	5.926	252.55	4.83
15	0.71	9.81	2.670	282.20	5.31
16	1.04	3.54	0.861	315.32	5.84
17	1.02	3.54	0.771	352.34	6.41
18	0.99	3.54	0.690	393.70	7.05
19	0.97	3.54	0.617	439.92	7.75
20	0.95	3.54	0.552	491.56	8.51
21	0.93	3.53	0.494	549.26	9.36
22	0.91	3.53	0.442	613.74	10.28
23	0.90	3.53	0.396	685.79	11.30
24	0.89	3.53	0.354	766.29	12.42
25	0.88	3.53	0.317	856.25	13.64
26	0.87	3.53	0.284	956.76	14.99
27	0.86	3.53	0.254	1069.08	16.48
28	0.85	3.53	0.227	1194.58	18.11
29	0.84	3.53	0.203	1334.81	19.90
30 #	0.83	3.53	0.182	1491.50	21.87
+	+	+	+	+	+

Мощность резания превышает мощность станка

Также программа строит графики зависимости производительности станка, себестоимости обработки детали и стоимости расходов на инструмент от заданной частоты вращения шпинделя при заданной подаче.

Рисунок 8.15 – Зависимости экономических показателей от частоты вращения шпинделя

Из зависимостей видно, что наибольшая производительность при минимальной себестоимости деталей достигается при частоте вращения n = 606,846 об/мин. Остальные параметры находятся в таблице результатов расчета: скорость резания V= 181,02 мм/мин; подача S = 0,5 мм/мин; глубина резания t = 2,7 мм; штучное время $T_{\rm mr}$ = 0,71 мин; мощность резания N = 3,64 кВт. Режимы резания заносим в операционную карту на рисунке 8.45.

8.3 Проектирование управляющей программы токарной обработки для ЧПУ в системе Fikus

8.3 Создание тела вращения в САD/САМ Cimatron [25].

8.3.1 Подготовка к построению эскиза вала.

Запускаем программу Cimatron, выбираем меню Файл>Новый документ, выбираем в появившемся диалоговом окне «Деталь» и нажимаем кнопку ОК.

И сразу сохраняем файл Файл>Сохранть как>Как главный документ «Вал05.elt». Выбираем в пункте меню Окружение>Плоскости>Главные плоскости и отмечаем пользовательскую систему координат. Подтверждаем выбор плоскостей нажатием ОК. На экране появляются главные плоскости (рисунок 8.17).

Рисунок 8.17 – Главные плоскости

8.1.2 Эскиз вала

На панели инструментов нажимаем кнопку *Эскизник, указываем курсором и нажатием ЛКМ плоскость XV* (в ней будет создан эскиз вала). Далее строим эскиз контура, используя команду Прямая. Выходим из Эскизника – кнопка .

8.1.3 Построение тела вращения.

8.1.3.1 Для построения оси вращения контура выбираем Окружение>Оси>Пересечение. Отмечаем поочередно курсором главные плоскости XY и ZY. Появляется линия пересечения плоскостей (рисунок 8.18).

Рисунок 8.18 – Выбор оси вращения для созданного контура

8.1.3.2 В меню Поверхности>Вращение, указываем контур и щелкаем ЛКМ, затем указываем ось вращения и щелкаем ЛКМ. Для подтверждения

построения нажимаем ОК. Вращаем на 360° , получим 3D-модель (рисунок 8.19).

Рисунок 8.19 – 3D-модель вала «Вал05.elt»

8.2 Запуск Fikus

В дереве построений созданной 3D-модели открываем самую последнюю ветвь Sketcher. И щелкаем по ней ПКП. Выбираем пункт «Показать Эскиз/Контур». Подводим курсор к детали, появляется эскиз и его выделяем, он остается на экране. Действия Показаны на рисунке 8.20.

Рисунок 8.20 – Выделение контура детали для последующей передачи его в Fikus

Выбираем меню Файл>Токарная обработка. Снова выделяем контур детали и щелкаем СКМ по области чертежа. Появляется диалоговое окно, где

сохраняем наш контур с другим расширением - «Вал05.c2f». Одновременно запускается среда Fikus (рисунок 8.21).

Рисунок 8.21 – Запуск среды Fikus

8.3 Работа в среде Fikus

8.3.1 Задание новой траектории

Во вкладке САМ выбираем кнопку «Новая траектория». Слева на экране появляется диалоговое окно где задаем название новой траектории (Переход 1) и выбираем главную плоскость (ХУ), снимем галку с Использовать мастер. Нажимаем кнопку ОК, она обозначается в Fikus зеленой галкой. В окне появится ветка – Переход 1 (рисунок 8.22).

Рисунок 8.22 – Задание новой траектории

8.3.2 Создание детали и заготовки

Нажимаем кнопку Новая деталь на панели САМ. В дереве появится новая ветка Geo2. Затем нажимаем кнопку «Укажите геометрию» на панели «Деталь». Появится окно «Задание детали» и одновременно выделяем рамкой контур детали. Появляется каркас вала. Далее закрываем диалоговое окно «Задание детали» и система предлагает заготовку с определенными параметрами. Так как параметры заготовки устраивают, нажимаем кнопку ОК и появляется каркас заготовки вокруг тела вращения. Действия показаны на рисунке 8.23.

При этом значок Geo2 в дереве создания станет объемным.

Рисунок 8.23 – Создание детали и заготовки

8.3.3 Закрепление заготовки в патроне.

Нажимаем кнопку «Задайте патрон» на панели «Деталь». Появляется на заготовке кулачки и еще кулачки вне заготовки (они обозначаются пунктирными линиями). Подволим кулачки к заготовке, где их необходимо разместить, и щелкаем ЛКМ. Они встают на заготовке, но еще не зажимают ее. Три раза нажимаем клавищу Enter. Теперь заготовка зажата в 3хкулачковом патроне (рисунок 8.24).

T.e. при закреплений заготовки в патроне мы выбираем пункт меню Create Chuck и проходим 3 шага: определяем положение кулачков патрона; определяем как расположены кулачки (слева, справа); определяем положений системы координат.

Рисунок 8.24 – Закрепление заготовки в патроне 8.3.4 Указание зоны обработки

Нажимаем кнопку «Укажите зону» на панели «Деталь». Появится диалоговое окно 2-Зона и не выходя из него указываем курсором начальную точку для обработки (она подсвечивается) и нажимаем ЛКМ. Далее ведем указателем мыши по контуру детали (контур подсвечивается красной пунктирной линией). Затем указываем конечную точку и также щелкаем по ней ЛКМ. Когда выполнили это действие нажимаем СКМ – это означает окончание шага. Видим что отмеченная зона отмечена красной сплошной линией (рисунок 8.25). Закрываем диалоговое окно.

Рисунок 8.25 – Указание зоны

3.5 Определение начальной точки

Нажимаем кнопку «Начальная точка» на панели Деталь. Подводим курсор к начальной точке, с которой начнется обработка, она подсветится желтым цветом и не нажимая на клавиши мыши отводим курсор влево и немного вниз, за указателем курсора будет тянуться желтая линия. Щелкаем ЛКМ на области работы. Далее таким же образом подсвечиваем конечную точку обработки и отводим указатель мыши вверх и немного вправо. Щелкаем сначала ЛКМ, а потом СКМ – что означает окончание шага (рисунок 8.26).

Рисунок 8.26 – Задание начальной точки

3.6 Черновая токарная обработка

Нажимаем кнопку «Черновая обработка» на панели «Процесс». Появляется диалоговое окно под деревом выполненных работ. В нем выбираем в окне «Код инструмента» – Rough, затем нажимаем кнопку с тремя точками и выбираем инструмент – Rough, остальные настройки оставляем без изменений. Затем переходим на вкладку «Дополнительно» и вводим 100 в окно позиция диаметр смены инструмента и 20 в окне Z корд. Смены инструмента. Видим что появился инструмент рядом с заготовкой.

Сохраним созданное в файл с расширением *.vcm. Для чего Файл>Сохранить как и вводим название файла Вал05.vcm.

Далее выделяем на дереве строку «Turning» и нажимам ПКМ, выбираем пункт меню «Вычислить», если заданы какие-либо параметры неверно, раздается звуковой сигнал и необходимо изменить их, если все задано верно, то на дереве работ значок у ветви «Turning» изменится – станет светофором с зажженным зеленым цветом (до этого зажжен был красный). Действия показаны на рисунке 8.27.

Рисунок 8.27 – Настройка черновой токарной обработки

3.7 Симуляция черновой обработки

Нажимаем кнопку «Симуляция» на панели САМ. Появляется диалоговое окно под деревом выполненных работ. В нем ставим галочки для наглядности процесса симуляции. И нажимаем кнопку «Воспроизвести». Видим, что инструмент движется по заданной траектории, а заготовка вращается, это видно по вращающимся кулачкам. Процесс завершен, следовательно, параметры черновой обработки заданы правильно (рисунок 8.28). Возвращаемся в зону проектирования, нажав кнопку с нарисованной дверью.

Рисунок 8.28 – Симуляция черновой обработки

3.8 Чистовая токарная обработка

Нажимаем кнопку «Чистовая обработка» на панели Процесс. Появляется диалоговое окно под деревом выполненных работ. В нем выбираем в окне «Код инструмента» – Finishing, затем нажимаем кнопку с тремя точками и выбираем инструмент – Finishing, остальные настройки оставляем без изменений. Затем переходим на вкладку «Дополнительно» и вводим 100 в окно Диаметр смены инструмента и 20 в окне Z корд. Смены инструмента. Видим, что появился инструмент рядом с заготовкой. Далее выделяем на дереве строку Turning и нажимам IIKM, выбираем пункт меню «Вычислить», если заданы какие-либо параметры неверно, раздается звуковой сигнал и необходимо изменить их. если все задано верно, то на дереве работ значок у ветви Finishing изменится – станет светофором с зажженным зеленым цветом (до этого зажжен был красный). Действия показаны на рисунке 8.29.

Рисунок 8.29 – Настройка чистовой токарной обработки (начало) 3.9 Симуляция чистовой токарной обработки

Производим аналогично черновой токарной обработке. Результат представлен на рисунке 8.30.

Рисунок 8.30 – Симуляция чистовой токарной обработки

3.10 Процессирование

Нажимаем ПКМ на ветке Geo2 на дереве построения, выбираем пункт Постпроцессирование. Появляется диалоговое окно, где даем название управляющей программе и нажимаем кнопку ОК. Затем опять щелкаем ПКМ на ветке Geo2 на дереве построения, выбираем пункт Просмотр УП. Появляется редактор с созданной управляющей программой (рисунок 8.31).

Рисунок 8.31 – Редактор с созданной управляющей программой

8.5 Подготовка управляющей программы для станка с ЧПУ Производится при помощи программного пакета САПР_ЧПУ2000/LT [13].

Исходными данными для получения УП служит описание участка, состоящего из примитивов, и процедуры обработки (рисунок 8.32).

```
ПРОГРАММА=СТРИЖОВ;
СТАНОК=105;
ТК0=0,80; ТК1=0,0; ТК2=30,0; ТК3=30,20; ТК4=155,20; ТК5=155,60; ТК6=162,70; ТК7=285,70;
ТК8=285,80; ПР0=ТК0,ТК1; ПР1=ТК1,ТК2; ПР2=ТК2,ТК3; ПР3=ТК3,ТК4; ПР4=ТК4,ТК5;
ПР5=ТК5,ТК6; ПР6=ТК6,ТК7; ПР7=ТК7,ТК8; ПР8=ТК8,ТК0;
Ч
НУ15;
ТК0; ПР0; ТК1; ФР-; ПР1; ПР2; ПР3; ПР4; ПР5; ПР6; ТК7; ФР0; ПР7; ПР8; ТК0;
КУ15;
НП1;
N/300; S/700; ТК0; SN/0.2; ВЫБП15; Н/1; Т/1; S/0.7; Р/1; КЦ;
КП1;
```

Рисунок 8.32 – Описание контура «Вал05.і»

После того, как описан контур, можно носмотреть в режиме симуляции последовательность обработки в окне эмуляции траектории инструмента. Здесь серым цветом показаны примитивы, из которых состоит контур, обведенный красным цветом. Траектория движения инструмента показана зеленым цветом (рисунок 8.33).

Рисунок 8.33 – Траектория движения инструмента

Если нас устраивает значения черновых и чистовых припусков, режимов резания других технологических команд, тогда можно И сделать управляющей программы. автоматический расчет Сама программа составляется на основе паспорта станка, который указывается при описании примитивов или задается при расчете.

Рисунок 8.34 – Фрагмент управляющей программы «Вал05.up» Первым шагом в программе следует установка технологических режимов, затем задаются перемещения. Так как выборка металла происходит по схеме петля, то во время холостого хода включается ускоренная подача.

8.2 Проектирование операционной технологии в САПР ТП «Вертикаль»

Создадим операционную и маршрутную карты технологического процесса обработки детали «Вал вторичный ЯМЗ-236.1701105» в САПР ТП «Вертикаль» [25].

Открываем программу. Нажимаем «Создать» и из выпавшего меню выбираем «ТП на деталь» (рисунок 8.16).

Файл	Вид	PDM	Архив	Настройка	Окна	Справка
Созда	ать 🔻 [2 🥩	P) 🗐 🔌		
60	ТП на д	цеталь				
8	тп на с	борку				
、 、		0.0	- (r		

Рисунок 8.35 – Создание нового ТП

Открывается окно создания новой технологии. Справа открываем вкладку «Атрибуты», где вводим название детали, фамилию разработчика. Наименование детали можно выбрать и из справочника. Для этого в левой

наименование детали

части экрана нажимаем и из открывшегося универсального технологического справочника выбираем название нашей детали. Выбираем

материал детали. Нажимаем

. Снова открывается универсальный овной мате

технологический справочник, где находим нужный нам материал. Атрибуты нашей детали показаны на рисунке 8.36.

Текст технологии Атрибу	ты Замечания <u>Чертеж</u>
Разработал	Стрижов Н.В.
Дата	22.04.2009
Обозначение изделия	236-1701105
№ чертежа детали	
Наименование детали	Вал вторичный
Код детали	
Обозначение тех.док.	
Чистый вес (кг)	0
Объем детали, мм3	0
Марка материала	
ГОСТ на материал	
Вид заготовки	
Сортамент	
Разм. заготовки	
Основной размер	
ГОСТ на сортамент	
Код заготовки	
КД	0
КЗ	0
Черный вес (кг)	
Вид доп. обработки	

Рисунок 8.36 – Атрибуты детали

Наводим курсор на наименование детали, нажимаем правую кнопку мыши и из выпавшего меню выбираем «Добавить операцию». Снова открывается УТС, где выбираем «Обработка резанием» > «Фрезерная» > «Фрезерно-центровальная» (рисунок 8.37).

Рисунок 8.37 – Выбор наименования операции

Выбираем станок. Для этого наводим курсор мыши на название детали и нажимаем правую кнопку мыши. В выпавшем меню выбираем «Добавить»>«Станок». Из открывшегося УТС выбираем станок (рисунок 8.38).

вбранный объект	Агрегатный АБ-0246\Разные фрезер	ные. Тип 9\МР-73			
<u>म</u>	⊡ Апрегатный АБ-0246	🛙 🎁 Данные 📃	Изображения 🔗 Атриб	уты 🛇 Документы	
Справочники	Разные фрезерные, Тип 9	Модель	Габаритная длина	Наименование	Coportos a Maryty (ana per
	н. Копировальные и гравировальные	6M23	3990	Карусельно-фрезерный	
	 Вертикать но флазарные басконсо. 	ИР500МФ4	4450	Фрезерлый станок (обрабатывающий центр)	
	Потольные твухстоенные Тип 6	6M82F	2780	Горизонтально-фрезерный	
	 Вертикально-фрезерные консольні 	6904BMΦ2	2790	Фрезерный станок	
помогательный	Продольные одностоечные. Тип 3	ИР500МФ4		оц	
	 Фрезерные непрерывного действи 	6906BMΦ2	3100	Фрезерный станок	
199	Горизонтально-фрезерные консоль	MP-73	and the second	Фрезерно-центровальный	
	Барабанно-фрезерные. Тип 0	ИР800МФ4	6885	Фрезерлый станок (обрабатывающий центр)	
Режущий инструмент					
Режущий инструмент Станоченые приспособления	V				
Рекущий инструмент Станочные ристособления Мобо Цеха-участки	v	J			
Рекулий инструмент Станочные риспособления Мерекания Цеха-участки	v				
Реку ший инструмент Станонные риспособления Може Цеха-участии	v	ч Использовать	хезерно-центров альная	Office T	
Рекудий инструмент Станочные риспособления Цеха-участии	Y	И Использовать И Ф	трезерно-центровальная Рагаллы чернов Стали Ст	066e1	
Рекузий инструмент Станомные риспосибления Мерестосибления Цеха-участки	v	I Cronsosare Venonsosare V M	резерно-центровальная Геталлы черные Стали Стг импносемиес	005er 1 3114 16/80202049491 CTAIRS 15XTH2TA FOCT 4543-71	
Реку ций инструмент Станочные риспособления Цеха-участки	¥	<u>ч</u> Использовать Ф ф Ф М Ф М	резерно-центровельная бталлы черноіє Стали Сті ургіносерийное кананобрайотая /	Объе т Объе т лия люйрорищени Сталь 15ХП+2ТА ГОСТ 4543-71	

Рисунок 8.38 – Выбор станка

Добавляем вспомогательный переход. Снова наводим курсор на операцию, из выпавшего меню выбираем «Добавить»>«Вспомогательный переход». Вновь открывается УТС (рисунок 8.39). Выбираем «Установочные» и находим текст перехода «Установить деталь».

Рисунок 8.39 – Выбор вспомогательного перехода

добавлению Теперь добавляем переход основной аналогично вспомогательного. Выбираем «Добавить»>«Основной переход». Из УТС выбираем «Фрезеровать»>«Наружные открывшегося торцы»>«Выдерживая размеры» (рисунок 8.40).

Рисунок 8.40 – Выбор основного перехода

Добавляем к переходу режущий инструмент. Наводим курсор на переход, нажимаем правую кнопку мыши и выбираем «Добавить»>«Режущий инструмент». Из УТС выбираем «Фреза»>«Фреза торцовая»>«Фреза T5К10»>«2214-0312» (рисунок 8.41).

ыбранный объект Фреза\Ф	реза торцовая\Фреза ТУ 2.035.022638.1155-88			4 1
Режущий инструмент	🔼 🛀 📕 Подгруппа РИ 🗔 Изображения 💖 А:	грибуты		
∃ Головка Эмбарали № ВИ	Наименование режанствум.	Режущий инструмент	Примечание	
 Эдоорезный ги Резьбонарезной 	фреза торцовая насадная	Фреза		
н Зенкер	фреза тору, насадн. мелкозуб. /вст нож. /тв. пла	с Фреза		
 Зенковка 	фреза торцовая насадная для легких сплавов	Фреза		
🗄 Круг	фреза торц.нас./вст.нож/пл.твердоспл./для л	е Фреза		
🔄 Напильник	фреза торцов конц.с мех.крепл.5-гран.тв.плас	т Фреза		
<u></u> Нож	ореза горцов.конц.с мех.крепл.круглых.тв.пла	а Фреза		
🕀 Оправка	фреза торцов.насадн./вст.нож/пласт.твердос	п Фреза		
н Пила	фреза тооцов с мех.креплением многогран.пл	а Фреза		
на Протяжка	фонза насядн. торцово-цил. /винт. зуб. /тв. пласт	и Фреза		
н Развелтка	о вст. нож	Фреза		
Ф Сверло	фреза торц.насадн.регул.	Фреза		
🕂 Цековка	Фреза торц. насадн. нерегул.	Фреза		
	фреза торц. с двойн. отриц. геометрией	Фреза		
	фреза торц. с двойн.положит.геометрией	Фреза		
1000 - 101	фреза торц. с 3-гран.пласт.с задн.углами	Фреза		
	фреза торц насадн регул со вставн ножам	Фреза		
		2		

Рисунок 8.41 – Обозначение фрезы

Добавляем измерительный инструмент. Наводим курсор на переход, нажимаем правую кнопку мыши и выбираем «Добавить»>«Измерительный инструмент». В УТС находим нужный нам штангенциркуль (рисунок 8.42).

🧐 Измерительные инструменть			
🗇 🔿 🖗 🖗 🖗 👘 🌒	2		
Выбранный объект Штангенинстр	умент\Штангенциркуль ГОСТ 166-89		3 1 🜩
Выбранный объект Штангенинстр В Илинерительные иниструиенты В Калифон С глубномеры В Приборы В Приборы В Изранстри В Илинеритеры В Илинеритеры В Голициномеры В Столикомеры В Соликомеры В Соликомеры	учент/Штангенциркуль ГОСТ 166-89 Инструмент III Изображения III Атрибуты Накенование изм.ниструк. Штангенциркуль Тип. III (адносторонние Штангенциркуль Тип. III (адносторонние Штангенциркуль Тип. III (Саросторонние с глубиномером Штангентиркиномеры Тип. III/ Штангентиркиномеры Тип. II/К Штангентиркиномеры Тип. II/К Штангентиркиномеры Тип. II/К		3 ∎ Примечание Пример условного обозначения шигантенциркула типа II с диалазоном иналерикай - 250 мм из начаением отсчета по ноинур U.05 кмс. Штантенциркуль Шиц-1-250-005 ГОСТ 156: 48 51 о ме, шигантенциркула типа I с диалазоном иналерикай - 250-01-11 ГОСТ 156: 58 51 То же, штантенциркула типа I с диалазоном иналерикай - 250-01-11 ГОСТ 156: 58 51 То же, штантенциркула типа I с диалазоном иналерикай - 250-01-11 ГОСТ 156: 58 51 То же, штантенциркула типа I с диалазоном иналерикай - 250-01-11 ГОСТ 156: 58 51 То же, штантенциркула типа I с диалазоном иналерикай - 250-01-11 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном иналерикай - 250-01 гОСТ 156: 58 То же, штантенциркула типа I с диалазоном инарерика D-150-002 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном инарерикай D-150-002 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном инарерика D-150-002 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном инарерика D-150-002 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном инарерика D-150-002 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном инарерика D-150-002 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном инарерика D-150-002 ГОСТ 156: 59 То же, штантенциркула типа I с диалазоном инарерика D-150-002 ГОСТ 156: 59 То же, штантенциркула ШиЦ1-1-25-001 ГОСТ 156: 59
enin energia de essenten lagunan (p. santo 1-génez energia nomen canan ang menor for asepteren gane nergia fonce nergia		2	Применить
ИзмИнструмент vrtserver\\i	2. ПРМ		

Рисунок 8.42 – Добавление измерительного инструмента

Аналогично добавляются остальные операции. Формируем ОК. Для этого в верхнем меню выбираем «Программы»>«Формирователь карт» открывается окно «Мастер (рисунок 8.43). Далее формирования технологической документации», в котором выбираем нужный вид документа, производим необходимые настройки технологического И нажимаем кнопку «Далее».

Рисунок 8.43 -- Вызов формирователя карт

Открывается диалог, результатом которого является МК и ОК в MS Excel (рисунки 8.44 и 8.45).

	10-	(H - D) Q (2	<u>3)</u> =			>		ЛистОК	1 - Microsoft Exce	Ę.					
-	Главная	Вставка	Разметко	Срончцы	Ферму	ты Дан	ные	Рецензирование В	ид Надстройки						
ſ	×	Autoproject G	(- 12 -	A A	** = =	5 ×>	3	Текстовый -	Sel			В•• Вставить *	Σ -	A7	a a
Bct	авить	ж к ч -	9	- A				- % 000 56 493	Условное	Форматировать	Стили	3* Удалить *	Q+ (ортировк	а Найт
Буфер	о обмена 🕞		рифт	G	Выра	знивание	G	Число Га	форматирование	Стили	AHEEK	Ячейки	-	Редактиро	звание
	F11	- (6 ^	fx	Стрижов	н.в.										
9 1	A B C	DFG	411	KL	M N	O P	Q	R S TU V WX Y	Z AA AI AC A	DAEAI AG ALA	AK AL AI	M AO ACARA	AUA	AWA VANA	Y AZ
10	Разааб	1. Smallwaft 1	HR		22.04	2074								2	1
12	Проверил	Шапишник	oð AM.				ЯГТ	У							
14	Sindepoun	ANNEULKUU	10.D.			-	1	127	Вал втор	บฯหมมั					T
10	n. KUHIIIU.	шилишник	UU A.M.				Сталь	15XFH2TA FORT 4543-71				1			_
17	11 0/	Кад	EB	МД	EH	Н расх	КИМ	Код заготовки	Прафиль и	оазмеры	KД	M3			
19	M 02			14,078	1			Штамповка	Second Co.		1				
20 21	A L	lex 94. Pl	Ч Опер. Кад на	именабани	<u>Кад наимен</u> не абаридави	ование опе зния	рации	C/1 Προφ	P YT	Обозначение КР КОИД	дакумент ЕН	07 Kum.	Tris	7	Гшт.
22	A03		005	4 <i>269 Ф</i> р	езерно-цен	провальная	i								
23	A04		010	4 <i>118 Cne</i>	циальная т	жарная									
24	A05		015	4.217 Прс	адальна свеј	плильная									
25	A06		020	4 <i>212 Po</i> c	диально-све,	плильная									
26	A07		025	4 <i>165 Шл</i>	цефрезерн	297									
27	A08		030	4 <i>165 Шл</i>	цефрезерн	27									
28	A09		035	4 <i>262 Го</i> р	пизантальни	-фрезерна	Я								
29	A 10		040	4 <i>262 Го</i> р	пизантальна	-фрезерна	я								
30	A11		045	4262 Fay	зизантальни	-фрезерна	Я								
31	A 12		050	4 <i>131 Kpy</i>	глошлифово	льная									
32	A 13		055	4 <i>165 Шл</i>	цефрезерні	09									
33	A 14		060	4 <i>152 3y</i> ð	адалбежная										
34	A 15		065	4 <i>212 Po</i> d	диально-све,	плильная									
35	A 16	1	070	4 <i>272 Cn</i> e	ециальная ф	резерная									
36	MK	Маршрутк	ная карта	6											2

Рисунок 8.44 – Маршрутная карта

									2	/
Разраб.	Стрижав Н.В.	03.06.200								
Провери	ил Шапошников А.М.		ЯГТУ							
<u>Утверд</u>	ил Янчевский Ю.В.									
					Ban t	กกกมฯหมมั				
Н. кант,	р. Шапашников А.М.			78	-	мп	7			42 KOUR
	Наименование операции	170011	ериал	T DEPUUL	M6 LD	ГЦ	טעוז	ФИЛЬ И размеры	/	15 NUNIL
	Фрезерно-центровальная	Сталь 15ХГН21	A FOCT 4543-71		К2					1
08	Горудование, устройство 4179	Обазначени	е программы	Το	TÔ	Т пз.	Тшт.	_	СОЖ	
Фре.	зерно-центравальный МР-7307								5% <u>ЭМ</u> УС	
Ρ			ПИ	D или В	L	<i>t</i>	i	2	Π	V
001	1. Установить деталь									
002	2. Фрезеровать наружные тарцы с	двух старан, выдерх	кивая размеры 573(-	1/						
тоз	Фреза 2214-0001 ГОСТ 24359-80									
τοι										
104	Ψμεзα 2214-0002 ΓΟΕΤ 24557-00									
<i>T05</i>	Штангенциркуль ШЦ-1-125-0,05 ГОС	T 166-89								
T06	Микраметр МК 600-1 ГОСТ 6507-90	0							<u> </u>	
<i>P07</i>				46,5	80	7 4	1	0,05	497	156
008	3. Центровать деталь с двух стор	юн, выдерживая разм	еры 20(+0,52) 13,2(+0	7,5/ ø13min ø18,	5min					
<i>T09</i>	Сверло 2317-0122 ГОСТ 14952-75					\sim				
T10	Сверла 2317-0122 ГОСТ 14952-75						90			
P11	,		,	13,2	21	15	1	0,063	580	32,8
012	4. Снять деталь				~					
13						12				
						2				
0k	К Опепацианная калта		i		20					4
					<u> </u>					

Рисунок 8.45 – Операционная карта

В ней изменяем название станка, т.к. в программе не было этого станка, и заносим результаты расчетов по программам КОN7 и КОNCUT.

Комментарии консультанта раздела по КИ КТПП\

- 1). Нет КЭ для ОК
- 2). УП не оформлена в виде ОК

3). Технологическая документация показана в виде рисунков (что не соответствует требованиям ЕСТД, но допустимо в качестве иллюстрации результатов компьютерного проектирования). Однако документация по всем операциям не приводится, и нет возможности проверить, соответствуют ли эти рисунки картам спроектированного в ДП технологического процесса

Таким образом, данный материал может служить лишь временным примером до подготовки методических указаний!